Ridge Ow Models for Image Segmentation
نویسندگان
چکیده
In this paper we introduce a new algorithm for segmentation of medical images of any dimension. The segmentation is based on geometric methods and multiscale analysis. A sequence of increasingly blurred images is created by Gaussian blurring. Each blurred image is segmented by locating its ridges, decomposing the ridges into curvilinear segments and assigning a unique label to each, and constructing a region for each ridge segment based on a ow model which uses vector elds naturally associated with the ridge nding. The regions from the initial image are leaf nodes in a tree. The regions from the blurred images are interior nodes of the tree. Arcs of the tree are constructed based on how regions at one scale merge via blurring into regions at the next scale. Objects in the image are represented by unions and diierences of subtrees of the full tree. The tree is used as input to a visualization program which allows the user to interactively explore the hierarchy and deene objects. Some results are provided for a 3{dimensional magnetic resonance image of a head.
منابع مشابه
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملAdaptive ow orientation based feature extraction in ngerprint images
A reliable method for extracting structural features from ngerprint images is presented Viewing ngerprint images as a textured image an orientation ow eld is computed Rest of the stages in the algorithm use the ow eld to design adaptive lters for the input image To accurately locate ridges a waveform projection based ridge segmentation algorithm is used The ridge skeleton image is obtained and ...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993